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ON GRADED RINGS WITH HOMOGENEOUS DERIVATIONS

YASSINE AIT MOHAMED

Abstract. We establish results related to homogeneous derivations, a con-
cept introduced by Kanunnikov (2018). First, we prove the existence of a
non-trivial family of derivations that are not homogeneous on graded rings.
Furthermore, based on homogeneous derivations, we extend certain existing
significant results in the context of prime (resp. semiprime) rings to gr-prime
(resp. gr-semiprime) rings, such as Posner’s and Herstein’s theorems.

1. Introduction

This paper is dedicated to studying the commutativity of graded rings via the
concept of homogeneous derivations introduced by Kanunnikov in [6]. Over the
last 50 years, researchers have been interested in understanding the structure and
commutativity of rings using specific types of mappings called derivations. Various
authors have widely studied this topic (for example see [1], [5], [10]). The study
of commutativity of prime rings with derivations was initiated by Posner in 1957.
Since then, the relationship between the commutativity of rings and the existence
of specific types of derivations has attracted many researchers. The main result in
this context is that a prime ring with a nonzero centralizing derivation must be a
commutative ring.

Graded rings have various applications in geometry and physics (for example,
see [7]), and appear in various contexts, from elementary to advanced levels. Based
on the rich heritage of ring theory, many researchers have attempted to extend and
generalize various classical results to graded settings. In this study, we continue
to investigate and extend many classical results concerning derivations on prime
(resp. semiprime) rings to gr-prime (resp. gr-semiprime) rings.

In this paper, R denotes an associative ring with the center Z(R), and G is
an abelian group with identity element e. For x, y ∈ R, we write [x, y] for the
Lie product xy − yx, and for a nonempty subset S of R, we write CR(S) =
{x ∈ R | [x, S] = 0} for the centralizer of S in R. A ring R is G-graded if there is
a family {Rg, g ∈ G} of additive subgroups Rg of (R, +) such that R =

⊕
g∈G Rg

and RgRh ⊆ Rgh for every g, h ∈ G. The additive subgroup Rg is called the
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homogeneous component of R. The set H(R) =
⋃

g∈G Rg is the set of homoge-
neous elements of R. A nonzero element x ∈ Rg is said to be homogeneous of
degree g, and we write deg(x) = g. An element x of R has a unique decomposition
x =

∑
g∈G xg, with xg ∈ Rg for all g ∈ G, where the sum is finite. The xg terms

are called the homogeneous components of the element x. It was proved in [9] that
Re is a subring of R and that if R has a unit 1, then 1 ∈ Re.

Let I be a right (resp. left) ideal of a graded ring R. Then I is said to be a
graded right (resp. left) ideal if I =

⊕
g∈G Ig, where Ig = (I ∩ Rg) for all g ∈ G.

That is, for x ∈ I, x =
∑

g∈G xg, where xg ∈ I for all g ∈ G. A graded proper
ideal P is said to be gr-prime if, whenever J1J2 ⊂ P for J1 and J2 graded ideals
of R, then J1 ⊂ P or J2 ⊂ P .

A graded ring R is said to be gr-prime (gr-semiprime) if aRb = {0} implies a = 0
or b = 0 (if aRa = {0} then a = 0), where a, b ∈ H(R). Moreover, a graded ring R
is a gr-semiprime ring if the intersection of all the gr-prime ideals is zero. This is
equivalent to R having no nonzero nilpotent graded ideals. Also a graded ring R
is called gr-semiprime if I2 ̸= {0} for all nonzero left (right or two-sided) graded
ideals I of R. As shown in group rings, there exist gr-prime (gr-semiprime) rings
that are not prime (semiprime); for more details we refer to [8]. The reader may
find it helpful to keep in mind the implications noted in the following figure:

prime gr-prime

semiprime gr-semiprime

An additive mapping d : R −→ R is a derivation of a ring R if d satisfies

d(xy) = d(x)y + xd(y) (Leibniz formula)

for all x, y ∈ R. A derivation d is called an inner derivation if there exists a ∈ R
such that d(x) = [a, x] for all x ∈ R. A mapping d is called centralizing if

[d(x), x] ∈ Z(R)

for all x ∈ R. In particular, if [d(x), x] = 0 for all x ∈ R, it is called commuting.
Furthermore, it is called central if d(x) ∈ Z(R) for all x ∈ R.

The remainder of this paper is structured as follows: In Section 2, we review the
definition of homogeneous derivations. We give an example of derivation, which
is not homogeneous for graded rings. Additionally, we present graded versions of
several results from the classical setting which we need for the rest of this paper.
In Section 3, we introduce graded analogs of Posner’s and Herstein’s theorems for
graded rings, along with related results. In Section 4, we extend some results given
for semiprime rings to gr-semiprime rings.

2. Preliminaries

In this section, we present some results concerning graded rings and homoge-
neous derivations that will be needed in subsequent sections of this paper.
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Proposition 2.1. Let R be a gr-prime ring. Then the following statements hold:
(1) If aRb = {0}, where a or b ∈ H(R), then a = 0 or b = 0.
(2) Let c ∈ Z(R) ∩ H(R) \ {0}. If x is an element of R such that cx ∈ Z(R),

then x ∈ Z(R).
(3) The centralizer of any nonzero graded one-sided ideal I is equal to the center

of R. In particular, if R has a nonzero central graded ideal, then it is a
commutative graded ring.

(4) Let P be a gr-prime ideal of R. If aRb ⊆ P , where a or b ∈ H(R), then
a ∈ P or b ∈ P .

Proof. (1) This follows from the fact that R is a gr-prime ring and that each element
of R has a unique decomposition.

(2) Let c ∈ Z(R) ∩ H(R) \ {0} and x ∈ R such that cx ∈ Z(R). For any y ∈ R,
we have [y, cx] = 0, which implies c[y, x] = 0. Thus, cR[y, x] = {0} for all y ∈ R.
From (1), we deduce that [x, y] = 0 for all y ∈ R. Therefore, x ∈ Z(R).

(3) Let I be a nonzero graded right ideal of R and a ∈ CR(I). By definition,
[a, x] = 0 for all x ∈ I. This implies x[a, y] = 0 for all x ∈ I and y ∈ R. Hence,
IR[a, y] = {0}. Since I is a nonzero graded ideal, we obtain rR[a, y] = {0} for all
y ∈ R and for some r ∈ I ∩ H(R) \ {0}. Applying (1), we conclude that [a, y] = 0
for all y ∈ R. Therefore, a ∈ Z(R). The reverse implication is immediate.

(4) Let a, b ∈ R. Without loss of generality, assume b ∈ H(R) and write
a =

∑
g∈G ag. Then aRb ⊆ P implies arb ∈ P for all r ∈ H(R), which yields∑

g∈G agrb ∈ P . Since P is a graded ideal, we obtain agrb ∈ P for all g ∈ G and
r ∈ H(R). Let I1 = RagR + Rag + agR + Zag and I2 = RbR + Rb + bR + Zb.
Clearly, I1 and I2 are graded ideals of R containing ag and b respectively. More-
over, I1I2 ⊆ P . Since P is a gr-prime ideal, either I1 ⊆ P or I2 ⊆ P . Thus, ag ∈ P
or b ∈ P . Therefore, a ∈ P or b ∈ P . □

Proposition 2.2. Let R be a gr-semiprime ring. Then the following statements
hold:

(1) Z(R) contains no nonzero nilpotent homogeneous element.
(2) Let a ∈ H(R) such that a[a, x] = 0 for all x ∈ R, then a ∈ Z(R).
(3) Let I be a graded right ideal of R and

Z(I) = {x ∈ I | [x, y] = 0 for all y ∈ I}.

Then Z(I) ⊂ Z(R).

Proof. (1) Suppose that Z(R) contains a nonzero nilpotent homogeneous element r,
and let I denote the ideal generated by r. Then I is a nilpotent graded ideal of R.
Since R is gr-semiprime, we conclude that I = {0}, which yields a contradiction.

(2) Let a ∈ H(R). For all x, y ∈ R, we have a[a, xy] = 0. Then a
(
x[a, y] +

[a, x]y
)

= 0, which means that ax[a, y] = 0 for all x, y ∈ R. This implies that
[a, y]x[a, y] = 0. So, [a, y]R[a, y] = {0} for all y ∈ R. In particular, [a, r]R[a, r] =
{0} for all r ∈ H(R). Since [a, r] ∈ H(R) and R is gr-semiprime, it follows that
[a, r] = 0 for all r ∈ H(R). Hence [a, y] = 0 for all y ∈ R. Therefore, a ∈ Z(R).
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(3) Let a ∈ Z(I)∩H(R). Then [a, x] = 0 for all x ∈ I, which implies a[a, xy] = 0
for all y ∈ R and x ∈ I. Thus, a[a, y] = 0 for all y ∈ R. By (2), we conclude that
a ∈ Z(R). Furthermore, for y =

∑
g∈G yg ∈ Z(I), we have yg ∈ Z(I). This implies

yg ∈ Z(R) for all g ∈ G. Therefore, y ∈ Z(R). □

Definition 2.3 ([6]). Let R be a G-graded ring. An additive mapping d : R −→ R
is called a homogeneous derivation if

(i) d(xy) = d(x)y + xd(y) for all x, y ∈ R.
(ii) d(r) ∈ H(R) for all r ∈ H(R).

Remark 2.4. Every homogeneous derivation is a derivation. However, the con-
verse statement is not true, as there exist derivations that are not homogeneous.
This can be demonstrated through the following example.

Example 2.5. Let R = M2(R), where R is the field of real numbers. Then R is
Z4-graded by

R0 =
{(

a 0
0 b

)
| a, b ∈ R

}
, R1 =

{(0 0
c 0

)
| c ∈ R

}
,

R3 =
{(0 d

0 0

)
| d ∈ R

}
, R2 =

{(0 0
0 0

)}
.

For x =
(2 1

4 3

)
, let dx : R −→ R be the inner derivation associated with x. Then

dx is not a homogeneous derivation of R with respect to the Z4-grading. Indeed,
for r =

(0 0
7 0

)
∈ H(R) we have dx(r) =

(7 0
7 −7

)
/∈ H(R).

Lemma 2.6. Let R be a gr-prime ring and I a nonzero graded left ideal of R. If
d is a nonzero homogeneous derivation of R, then its restriction on I is nonzero.

Proof. Assume that d(x) = 0 for all x ∈ I. For any x ∈ I and y ∈ R, we have
d(y)x = 0. This implies d(R)RI = {0}. Since I is a nonzero graded left ideal, we
obtain d(R)Rr = {0} for some r ∈ I ∩H(R)\{0}. By Proposition 2.1, we conclude
that d(R) = {0}, a contradiction. □

The following proposition is the graded analog of [2, Lemma 4], which we will
need to prove Theorem 3.3 and Theorem 4.1.

Proposition 2.7. Let R be a gr-semiprime ring and I be a nonzero graded left
ideal of R. If d is a homogeneous derivation of R which is centralizing on I, then
d is commuting on I.

Proof. The application of arguments analogous to those presented in the proof of
[2, Lemma 4] leads to the following:

8[d(x), x]3 = 0
for all x ∈ I. In particular, since I is a graded left ideal of R, we have 8[d(r), r]3 = 0
for all r ∈ I ∩ H(R). From Proposition 2.2, it follows that 2[d(r), r] = 0 for
all r ∈ I ∩ H(R). By straightforward computations, we obtain [r, d(r)]3 = 0
for all r ∈ I ∩ H(R). Since [r, d(r)] is a central nilpotent homogeneous element
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of R, Proposition 2.2 implies that [r, d(r)] = 0 for all r ∈ I ∩ H(R). Therefore,
[x, d(x)] = 0 for all x ∈ I, as required. □

The following lemma is the graded analog of [5, Theorem 1], which we will need
to prove Theorem 3.5.

Lemma 2.8. Let R be a gr-prime ring of characteristic different from 2. If d is a
homogeneous derivation and c ∈ H(R) is such that

[c, d(x)] ∈ Z(R)

for all x ∈ R, then d = 0 or c ∈ Z(R).

Proof. Firstly, we start with
[c, d(x)] = 0 (2.1)

for all x ∈ R. Replacing x by xz in (2.1) and using it, we get

d(x)[c, z] + [c, x]d(z) = 0 (2.2)

for all x, z ∈ R. Substituting zd(y) instead of z in (2.2), it follows that

[c, x]zd2(y) = 0

for all x, y, z ∈ R. Hence [c, x]Rd2(y) = {0} for all x, y ∈ R. In particular,
[c, r]Rd2(y) = {0} for all r ∈ H(R) and y ∈ R. In light of Proposition 2.1, we can
see that either [c, r] = 0 or d2(y) = 0 for all r ∈ H(R) and y ∈ R. This implies that

c ∈ Z(R) or Rd2(R) = {0}.

If Rd2(R) = {0}, then rRd2(y) = {0} for all r ∈ H(R) \ {0} and y ∈ R. Using
Proposition 2.1, we obtain d2(y) = 0 for all y ∈ R. By computation and noting
that char(R) ̸= 2, we establish that d(x)zd(y) = 0 for all x, y, z ∈ R, which implies
d(x)Rd(y) = {0} for all x, y ∈ R. Therefore, d(r)Rd(r) = {0} for all r ∈ H(R).
Since R is gr-prime, we get d(r) = 0 for all r ∈ H(R), hence d = 0.

Returning to the general case,

[c, d(x)] ∈ Z(R) (2.3)

for all x ∈ R. Writing [c, x] instead of x in (2.3), we obtain[
c, [d(c), x]

]
∈ Z(R) (2.4)

for all x ∈ R. Replacing x by cx in (2.4) yields[
d(c), c

]
[c, x] + c

[
c, [d(c), x]

]
∈ Z(R) (2.5)

for all x ∈ R. By straightforward computations and applying the previously estab-
lished equations, we obtain [d(c), c]R

[
[c, x], c] = 0 for all x ∈ R. Proposition 2.1

then implies either [d(c), c] = 0 or
[
[c, x], c] = 0. In the second case, we can see

that [c, x]Rd2(y) = 0 holds for all x, y ∈ R. Applying Proposition 2.1 and given
that char(R) ̸= 2, we conclude that either c ∈ Z(R) or d = 0. Now, assume that
[d(c), c] = 0. Then (2.5) becomes

c
[
c, [d(c), x]

]
∈ Z(R)
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for all x ∈ R. Hence, either
[
c, [d(c), x]

]
= 0 or c ∈ Z(R). In either case, we obtain[

c, [d(c), x]
]

= 0 for all x ∈ R. This can be expressed as
[
c, δd(c)(x)

]
= 0, where

δd(c) is a homogeneous derivation defined by δd(c)(z) := [d(c), z] for all z ∈ R. From
our previous analysis, we conclude that either c ∈ Z(R) or δd(c) = 0. Consequently,
either c ∈ Z(R) or d(c) ∈ Z(R). Both cases force d(c) ∈ Z(R).

Replacing x by xc in (2.3), we get
[c, d(x)]c + [c, x]d(c) ∈ Z(R) (2.6)

for all x ∈ R. Commuting (2.6) with c, we arrive at
[
[c, x], c

]
d(c) = 0 for all x ∈ R.

Therefore,
[
[c, x], c

]
Rd(c) = {0} for all x ∈ R. Applying Proposition 2.1, we obtain

that either
[
[c, x], c

]
= 0 or d(c) = 0. By arguments similar to those previously

established, we can see that either d = 0 or c ∈ Z(R). □

3. Some commutativity criteria involving homogeneous derivations
on gr-prime rings

We begin this section by introducing the graded analogs of Posner’s theorems.

Theorem 3.1. Let R be a gr-prime ring with characteristic different from 2, and let
d1 and d2 be derivations of R. Suppose that at least one of d1 and d2 is homogeneous
and their composition d1d2 is a derivation. Then either d1 = 0 or d2 = 0.

Proof. Without loss of generality, we may assume that d2 is a homogeneous deriva-
tion. By arguments similar to those in the proof of [10, Theorem 1], we obtain the
following identity:

d2(x)yd1(x) + d1(x)yd2(x) = 0 (3.1)
for all x, y ∈ R. Replacing y by sd2(x)t in (3.1), we get

d2(x)sd2(x)td1(x) + d1(x)sd2(x)td2(x) = 0 (3.2)
for all x, t, s ∈ R. Since

d2(x)sd1(x) = −d1(x)sd2(x) and d2(x)td1(x) = −d1(x)td2(x),
substituting these into (3.2) yields

2d2(x)sd1(x)td2(x) = 0
for all x, s, t ∈ R. As char(R) ̸= 2, we obtain

d2(x)sd1(x)td2(x) = 0
for all x, s, t ∈ R. Thus, d2(x)sd1(x)Rd2(x) = {0} for all x, s ∈ R. In particular,
d2(r)sd1(r)Rd2(r) = {0} for all r ∈ H(R) and s ∈ R. According to Proposition 2.1,
we have d2(r)sd1(r) = 0 or d2(r) = 0 for all r ∈ H(R) and s ∈ R. However,
d2(r) = 0 also implies d2(r)sd1(r) = 0. In both cases, d2(r)sd1(r) = 0 for all
r ∈ H(R) and s ∈ R, which implies d2(r)Rd1(r) = {0} for all r ∈ H(R). Therefore,
either d1(r) = 0 or d2(r) = 0 for all r ∈ H(R). Consequently, either d1 = 0 or
d2 = 0. □

Here are two examples showing that the two conditions on R given in Theo-
rem 3.1 are necessary and not superfluous.
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Example 3.2. (1) Let R =
{(

a b
b a

)
| a, b ∈ Z2

}
. Then R is Z4-graded by

R0 =
{(

a 0
0 a

)
| a ∈ Z2

}
, R2 =

{(0 b
b 0

)
| b ∈ Z2

}
and

R1 = R3 =
{(0 0

0 0

)}
.

Consider the mapping
d : R −→ R(

a b
b a

)
7−→

(0 b
b 0

)
.

Then d is a homogeneous derivation of R and that R is gr-prime with char(R) = 2.
Let us consider d1 = d2 = d. Then d1d2 is a derivation of R. However, neither
d1 = 0 nor d2 = 0.

(2) Let R = M2(C) × M2(C), where C is the field of complex numbers. Then R
is Z4-graded by

R0 =
{((

a 0
0 b

)
,
(

c 0
0 d

))
| a, b, c, d ∈ C

}
,

R2 =
{((0 0

0 0

)
,
(0 0

0 0

))}
,

R1 =
{((0 0

e 0

)
,
(0 0

f 0

))
| e, f ∈ C

}
,

R3 =
{((0 g

0 0

)
,
(0 h

0 0

))
| g, h ∈ C

}
.

R is not a gr-prime ring. Let us consider two homogeneous derivations
δ1 : R −→ R

(x, y) 7−→ (d1(x), 0) and δ2 : R −→ R
(x, y) 7−→ (0, d2(y))

where
d1

(
a b
c d

)
=

( 0 b
−c 0

)
and d2

(
a b
c d

)
=

(0 −ib
ic 0

)
for all

(
a b
c d

)
∈ M2(C). Then δ1δ2 is a derivation of R. However, δi ̸= 0 for i = 1, 2.

Theorem 3.3. Let R be a gr-prime ring and I a nonzero graded ideal of R. If R
admits a nonzero homogeneous derivation d such that

[d(x), x] ∈ Z(R)

for all x ∈ I, then R is a commutative graded ring.

Proof. We are given that
[d(x), x] ∈ Z(R)

for all x ∈ I. According to Proposition 2.7, it follows that [d(x), x] = 0 for all
x ∈ I. Linearizing this expression yields

[d(x), y] = [x, d(y)]
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for all x, y ∈ I. The identical arguments presented in the proof of [3, Theorem 2.1]
result in the following identity:

[x, yd(x)] = 0 (3.3)

for all x, y ∈ I. Substituting zy for y in (3.3), we get

[x, z]yd(x) = 0

for all x, y ∈ I and z ∈ R. This means that [x, z]RId(x) = {0} for all x ∈ I and
z ∈ R. Since I is a graded ideal, we have [r, z]Rr′d(r) = {0} for all r, r′ ∈ I ∩ H(R)
and z ∈ R. In view of Proposition 2.1, we conclude that [r, z] = 0 or r′d(r) = 0 for
all r, r′ ∈ I ∩ H(R) and z ∈ R. Hence [x, z] = 0 or Id(x) = {0} for all x ∈ I and
z ∈ R. Now, if [x, z] = 0 for all x ∈ I and z ∈ R, then it follows that I ⊂ Z(R).
So, R contains a nonzero central graded ideal. By Proposition 2.1, we conclude
that R is a commutative graded ring. If Id(x) = {0} for all x ∈ I, then we have
IRd(x) = {0} for all x ∈ I. In particular, rRd(x) = {0} for some r ∈ I∩H(R)\{0}.
Once again invoking Proposition 2.1, it follows that d(x) = 0 for all x ∈ I. So,
d(I) = {0}. Moreover, Lemma 2.6 implies that d = 0 on R, a contradiction. □

The following example demonstrates that the gr-primeness hypothesis on R is
essential.

Example 3.4. Consider R = C[X] × M2(C). R is Z-graded by

R0 = C ×
{(

z 0
0 z′

)
| z, z′ ∈ C

}
,

R1 = spanC(X) ×
{(

0 z
z′ 0

)
| z, z′ ∈ C

}
,

Rn =


{(

0,
(0 0

0 0

))}
if n < 0,

spanC(Xn) ×
{(0 0

0 0

)}
if n ≥ 2.

R is not a gr-prime ring. Define a map d : R −→ R by

d
(

P,
(

a b
c d

))
=

(
D(P ),

(0 0
0 0

))
for all P ∈ C[X] and

(
a b
c d

)
∈ M2(C), where D := d

dX is the usual derivation of
C[X]. Therefore, d is a homogeneous derivation of R. In addition, the condition
[d(x), x] ∈ Z(R) is satisfied for all x ∈ I (where I = R). However, it should be
noted that R is a non-commutative graded ring.

In [6], it was shown that if a gr-prime ring R admits a homogeneous derivation
d satisfying

[d(x), d(y)] = 0
for all x, y ∈ R, then either R is a commutative graded ring or d2 = 0. Moreover,
when char(R) ̸= 2, it follows that either d = 0 or R is a commutative graded ring.

Rev. Un. Mat. Argentina, Vol. 69, No. 1 (2026)



ON GRADED RINGS WITH HOMOGENEOUS DERIVATIONS 63

This result is a graded analog of Herstein’s theorem [5, Theorem 2]. In light of this
result, we examine the more general case where

[d1(x), d2(y)] ∈ Z(R)
for all x, y ∈ R and d1, d2 are homogeneous derivations.

Theorem 3.5. Let R be a gr-prime ring of characteristic different from 2. If d1
and d2 are nonzero homogeneous derivations of R such that

[d1(x), d2(y)] ∈ Z(R)
for all x, y ∈ R, then R is a commutative graded ring.

Proof. In view of our hypothesis, we have
[d1(x), d2(y)] ∈ Z(R)

for all x, y ∈ R. In particular,
[d1(r), d2(y)] ∈ Z(R)

for all r ∈ H(R) and y ∈ R. According to Lemma 2.8, we have either d1(r) ∈ Z(R)
for all r ∈ H(R) or d2(y) = 0 for all y ∈ R. Hence d1(x) ∈ Z(R) for all x ∈ R
or d2(R) = {0}. Since d2 ̸= 0, it follows that d1(x) ∈ Z(R). Moreover, we have
[d1(x), x] ∈ Z(R) for all x ∈ R. According to Theorem 3.3, we conclude that R is
a commutative graded ring. □

The following example shows that both the gr-primeness hypothesis and the
condition char(R) ̸= 2 imposed on R are necessary.

Example 3.6. (1) Let R =
{(

a b
0 c

)
| a, b, c ∈ R

}
. R is Z2-graded by

R0 =
{(

a 0
0 b

)
| a, b ∈ R

}
and R1 =

{(0 c
0 0

)
| c ∈ R

}
.

Then R is not a gr-prime ring with char(R) ̸= 2. Let us consider the following
mappings:

d1 : R −→ R(
a b
0 c

)
7−→

(0 b
0 0

) and
d2 : R −→ R(

a b
0 c

)
7−→

(0 a + b − c
0 0

)
.

Then d1 and d2 are homogeneous derivations of R such that [d1(x), d2(y)] ∈ Z(R).
However, R is a non-commutative graded ring.
(2) Let R =

{(
a b
b a

)
| a, b ∈ Z2

}
. Then R is Z4-graded by

R0 =
{(

a 0
0 a

) ∣∣a ∈ Z2

}
, R2 =

{(0 b
b 0

)
| b ∈ Z2

}
, and R1 = R3 =

{(0 0
0 0

)}
.

R is gr-prime with char(R) = 2. Let d be a homogeneous derivation of R defined
as follows:

d : R −→ R(
a b
b a

)
7−→

(0 b
b 0

)
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Take d1 = d2 = d. Then [d1(x), d2(y)] ∈ Z(R) for all x, y ∈ R. However, R is a
non-commutative graded ring.

If R is equipped with a trivial grading, we obtain a generalization of Herstein’s
result [5]. As an immediate consequence of Theorem 3.5, we have the following
corollary.

Corollary 3.7. Let R be a prime ring of characteristic different from 2. If R
admits two nonzero derivations d1 and d2 such that

[d1(x), d2(y)] ∈ Z(R)

for all x, y ∈ R, then R is a commutative ring.

In [1], it was proved that a prime ring R with a nonzero ideal I must be com-
mutative if it admits a derivation d satisfying either of the following properties:

d(x)d(y) ± xy ∈ Z(R)

for all x, y ∈ I. Inspired by this result, we aim to investigate a more general setting
by considering differential identities involving two homogeneous derivations d1 and
d2 satisfying

d1(x)d2(y) ± xy ∈ Z(R)
for all x, y ∈ I, where I is a graded ideal of a gr-prime ring R.

Theorem 3.8. Let R be a gr-prime ring and I a nonzero graded ideal of R. If R
admits two homogeneous derivations d1 and d2 satisfying

d1(x)d2(y) ± xy ∈ Z(R)

for all x, y ∈ I, then R is a commutative graded ring.

Proof. Consider the case

d1(x)d2(y) − xy ∈ Z(R) (3.4)

for all x, y ∈ I. Next, we examine two cases.

Case 1: If d1 = 0 or d2 = 0, we have xy ∈ Z(R) for all x, y ∈ I. This implies that
[xy, z] = 0 for all x, y ∈ I and z ∈ R. In particular,

[xy, x] = 0 (3.5)

for all x, y ∈ I. Substituting yz for y in (3.5), we obtain

xy[z, x] = 0

for all x, y, z ∈ I. Therefore, xRI[z, x] = {0} for x, z ∈ I. Since I is a nonzero
graded ideal of R, we have rRI[z, r] = {0} for all r ∈ I ∩ H(R) \ {0} and z ∈ I.
In light of Proposition 2.1, we obtain I[z, r] = {0} for all r ∈ I ∩ H(R) and z ∈ I,
which implies that I[x, z] = {0} for all x, z ∈ I. Thus, IR[z, x] = {0} for all
x, z ∈ I. Applying Proposition 2.1, we conclude that I is commutative. Hence, I
is a central graded ideal of R, and consequently, R is a commutative graded ring.
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Case 2: If d1 ̸= 0 and d2 ̸= 0, replacing x by xz in (3.4), we get

d1(x)zd2(y) + x
(
d1(z)d2(y) − zy

)
∈ Z(R) (3.6)

for all x, y, z ∈ I. Commuting (3.6) with x, we obtain

[d1(x)zd2(y) + x
(
d1(z)d2(y) − zy

)
, x] = 0

for all x, y, z ∈ I, which means that

[d1(x)zd2(y), x] = 0 (3.7)

for all x, y, z ∈ I. Substituting zt for z in (3.7), we get

d1(x)zt[d2(y), x] + [d1(x)zt, x]d2(y) = 0 (3.8)

for all x, y, z ∈ I and t ∈ R. Substituting d2(y) for t in (3.8) and using (3.7), we
obtain

d1(x)zd2(y)[d2(y), x] = 0
for all x, y, z ∈ I. Thus,

d1(x)RId2(y)[d2(y), x] = {0}

for all x, y ∈ I. In particular,

d1(r)RId2(y)[d2(y), r] = {0}

for all y ∈ I and r ∈ I ∩ H(R). According to Proposition 2.1, we have either
d1(r) = 0 or Id2(y)[d2(y), r] = {0}. Therefore, d1(x) = 0 or Id2(y)[d2(y), x] = {0}
for all x, y ∈ I. Since d1 ̸= 0, we have d1 ̸= 0 on I. Hence Id2(y)[d2(y), x] = {0}
for all x, y ∈ I, which implies that

IRd2(y)[d2(y), x] = {0}

for all x, y ∈ I. So,
d2(y)t[x, d2(y)] = 0

for all x, y, t ∈ I. This implies that

d2(y)RI[x, d2(y)] = {0}

for all x, y ∈ I. Using arguments similar to those above, we can show that
[s, d2(y)] = 0 for all y ∈ I and s ∈ R. Hence d2(I) ⊂ Z(R). Moreover, we
have [xy, d1(x)] = 0 for all x, y ∈ I. Substituting yt for y, where t ∈ R, we get
xy[t, d1(x)] = 0. So, xRI[t, d1(x)] = {0}. It follows from Proposition 2.1 that
[t, d1(x)] = 0 for all x ∈ I and t ∈ R. Hence d1(I) ⊂ Z(R). Therefore, (3.4)
reduces to

xy ∈ Z(R)
for all x, y ∈ I. According to Case 1, we conclude that R is a commutative graded
ring. Further, in the end the second case d1(x)d2(y) + xy ∈ Z(R) can be reduced
to the first one by considering −d2 instead of d2. □

The following example shows that the gr-primeness condition imposed on R is
necessary.
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Example 3.9. Let R =
{(

a b
0 0

)
| a, b ∈ R

}
× R[X]. Then R is Z-graded by

R0 =
{(

a 0
0 0

)
| a ∈ R

}
× R, R1 =

{(0 b
0 0

)
| b ∈ R

}
× spanR(X)

and

Rn =


{(0 0

0 0

)}
× spanR(Xn) if n ≥ 2,{(0 0

0 0

)}
×

{
0R[X]

}
if n < 0.

Let us consider the following mappings:
d1 : R −→ R((

a b
0 0

)
, P

)
7−→

((0 5b
0 0

)
, dP

dX

)
and

d2 : R −→ R((
a b
0 0

)
, P

)
7−→

((0 a + 2b
0 0

)
, 0R[X]

)
Then d1 and d2 are homogeneous derivations of R. Consider the graded ideal
I =

{(0 3c
0 0

)
| c ∈ R

}
×⟨X2⟩ of R. Here, R is not a gr-prime ring and d1(x)d2(y)±

xy ∈ Z(R) for all x, y ∈ I. However, R is a non-commutative graded ring.

4. On graded ideals of gr-semiprime rings involving
homogeneous derivations

In [2], it was shown that if a semiprime ring R admits a derivation that is
centralizing on some nontrivial one-sided ideal, then R must have a nontrivial
central ideal. Moreover, under similar conditions, prime rings are proven to be
commutative. The following theorem extends these results to gr-semiprime rings.

Theorem 4.1. Let R be a gr-semiprime ring and I a nonzero graded left ideal of R.
If R admits a homogeneous derivation d which is nonzero on I and centralizing on I,
then R contains a nonzero central graded ideal.

Proof. By Proposition 2.7, d is commuting on I, i.e., [d(x), x] = 0 for all x ∈ I.
A linearization of this relation leads to

[y, d(x)] + [x, d(y)] = 0 (4.1)

for all x, y ∈ I. Writing yx instead of y in (4.1) and using it, we get

[x, y]d(x) = 0 (4.2)

for all x, y ∈ I. Replacing y by zy in (4.2), we get

[x, z]yd(x) = 0

for all x, y, z ∈ I, which implies that

[x, z]RId(x) = {0}
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for all x, z ∈ I. Since R is gr-semiprime, there exists a family F := {Pi : i ∈ Λ} of
gr-prime ideals such that

⋂
i∈Λ Pi = {0}, and therefore,

[x, z]RId(x) ⊂ Pi

for all x, z ∈ I and i ∈ Λ. Since I is a graded left ideal, it follows that for each
i ∈ Λ, we have

[r′, z]Rrd(r′) ⊆ Pi

for all r, r′ ∈ I ∩ H(R) and z ∈ I. By Proposition 2.1, we have either [r′, z] ∈ Pi or
rd(r′) ⊂ Pi for all r, r′ ∈ I ∩ H(R) and z ∈ I. Therefore, we claim that

[x, z] ∈ Pi (∗)
for all x, z ∈ I, or

Id(I) ⊂ Pi (∗∗)
for all i ∈ Λ. Let Γ1 := {i ∈ Λ | [x, z] ∈ Pi for all x, z ∈ I} and Γ2 := {i ∈ Λ |
Id(I) ⊂ Pi}. Call Pi a type (∗) gr-prime for all i ∈ Γ1, and a type (∗∗) gr-prime
for all i ∈ Γ2. Let PΓ1 and PΓ2 be the intersections of all type (∗) and type (∗∗)
gr-primes, respectively. Note that PΓ1 ∩ PΓ2 = {0}. Arguments identical to those
used in the proof of [2, Theorem 3] and the fact that PΓ2 is gr-prime lead to

Rd(R) ⊂ PΓ2 .

Let us consider J , the left ideal generated by d(R)I. Then J is a graded left ideal.
We need to show that J is a nonzero graded two-sided central ideal. First, let us
prove that J is nonzero. If J = {0}, then d(R)I = {0}. Since Id(R) is a graded
left ideal of R and Id(R)Id(R) = {0}, we have (Id(R))2 = {0}. As a gr-semiprime
ring contains no nonzero nilpotent graded left ideal, we obtain Id(R) = {0}. Thus,
yd(zz′) = 0 for all y ∈ I and z, z′ ∈ R, which implies yd(z)z′ + yzd(z′) = 0 and
consequently yzd(z′) = 0. Therefore,

IRd(R) = {0}. (4.3)
Straightforward computations with (4.3) show that d(y)Rd(y) = {0} for all y ∈ I.
In particular, d(r)Rd(r) = {0} for all r ∈ I ∩ H(R). By the gr-semiprimeness
of R, we obtain d(r) = 0 and hence d(I) = {0}, which contradicts our assumption.
Therefore, we conclude that J must be nonzero. Using the same arguments as in the
proof of [2, Theorem 3] and the above results, we can show that J is commutative.
Thus, J = Z(J). According to Proposition 2.2, we have J ⊆ Z(R), which implies
that J is a central graded ideal. □

As a direct consequence of Proposition 2.2 and Theorem 4.1, we have the fol-
lowing corollary.

Corollary 4.2. Let R be a gr-prime ring and I a nonzero graded left ideal. If
R admits a nonzero homogeneous derivation that is centralizing on I, then R is a
commutative graded ring.

Theorem 4.3. Let R be a gr-semiprime and d a homogeneous derivation of R
such that d3 ̸= 0 and [d(x), d(y)] = 0 for all x, y ∈ R. Then R contains a nonzero
central graded ideal.
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Proof. Let Rd denote the subring of R generated by elements of the form d(x),
where x ∈ R. We have d(R) ⊂ Rd. Since d3 ̸= 0, there exists a homogeneous
element r ∈ H(R) \ {0} such that d3(r) ̸= 0. So, d2(d(r)) ̸= 0. Let y = d(r) ∈ Rd

and let I be the ideal generated by d2(y). Clearly, I is contained in Rd. Since
d2(y) ∈ H(R), it follows that I is a graded ideal. Consequently, Rd contains a
nonzero graded ideal I of R. Based on our hypothesis, I is commutative, and by
Proposition 2.7, we have I = Z(I) ⊂ Z(R). Hence I is a nonzero central graded
ideal of R. □

In [4], Daif extends a result of Herstein concerning a derivation d on a prime
ring R satisfying

[d(x), d(y)] = 0
for all x, y ∈ R, to the case of semiprime rings. In what follows, we extend this
result to gr-semiprime rings.

Theorem 4.4. Let R be a gr-semiprime ring and I a nonzero graded ideal of R.
Assume that R admits a homogeneous derivation d which is nonzero on I and
satisfies

[d(x), d(y)] = 0
for all x, y ∈ I. Then R contains a nonzero central graded ideal.

Proof. By hypothesis, we have
[d(x), d(y)] = 0 (4.4)

for all x, y ∈ I. Replacing y by yz in (4.4), we obtain
d(y)[d(x), z] + [d(x), y]d(z) = 0 (4.5)

for all x, y, z ∈ I. Substituting zs for z in (4.5), we get
d(y)z[d(x), s] + [d(x), y]zd(s) = 0

for all x, y, z ∈ I and s ∈ R. Replacing s with d(t), we find that

[d(x), y]zd2(t) = 0
for all x, y, z, t ∈ I. Now, using the same arguments as in the proof of Theorem 4.1,
we arrive at [d(x), y] = 0 for all x, y ∈ I. In particular, [d(x), x] = 0 for all x ∈ I.
By Theorem 4.1, R contains a nonzero central graded ideal. □
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